CS70: Lecture 11. Outline.

- 1. Public Key Cryptography
- 2. RSA system
 - 2.1 Efficiency: Repeated Squaring.
 - 2.2 Correctness: Fermat's Theorem.
 - 2.3 Construction.
- 3. Warnings.

Lots of Mods

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 (mod 5)!
Let's try 3. Not 5 (mod 7)!
If x = 6 \pmod{7}
 then x is in \{5, 12, 19, 26, 33\}.
Oh, only 33 is 3 (mod 5).
Hmmm... only one solution.
A bit slow for large values.
```

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

```
Find x = a \pmod{m} and x = b \pmod{n} where gcd(m, n)=1.
```

```
CRT Thm: Unique solution (mod mn). Proof:
```

```
Consider u = n(n^{-1} \pmod{m}).

u = 0 \pmod{n} u = 1 \pmod{m}
```

Consider
$$v = m(m^{-1} \pmod{n})$$
.
 $v = 1 \pmod{n}$ $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution? If not, two solutions, x and y.

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.

$$\implies$$
 $(x-y)$ is multiple of m and n since $gcd(m,n)=1$.

$$\implies x-y \ge mn \implies x,y \not\in \{0,\ldots,mn-1\}.$$

Thus, only one solution modulo *mn*.

Xor

Computer Science:

1 - True

```
0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A \oplus B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
Note: Also modular addition modulo 2!
      {0,1} is set. Take remainder for 2.
Property: A \oplus B \oplus B = A.
By cases: 1 \oplus 1 \oplus 1 = 1....
```

Cryptography ...

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Public key crypography.

$$m = D(E(m, K), k)$$

Private: k

Public: K

Message m
 $E(m, K)$

Bob

Eve

Everyone knows key K!Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.

Is this even possible?

Is public key crypto possible?

```
We don't really know. ...but we do it every day!!!
```

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose *e* relatively prime to (p-1)(q-1).

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

Encoding: $mod(x^e, N)$.

Decoding: $mod(y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

Yes!

¹Typically small, say e = 3.

Iterative Extended GCD.

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since \gcd(7,60) = 1.

\gcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

Confirm:
$$-119 + 120 = 1$$

 $d = e^{-1} = -17 = 43 = \pmod{60}$

Encryption/Decryption Techniques.

```
Public Key: (77,7) Message Choices: \{0,\ldots,76\}. Message: 2! E(2)=2^e=2^7\equiv 128\pmod{77}=51\pmod{77} D(51)=51^{43}\pmod{77} uh oh! Obvious way: 43 multiplications. Ouch. In general, O(N) or O(2^n) multiplications!
```

Repeated squaring.

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1
(mod 77).
4 multiplications sort of...
Need to compute 51<sup>32</sup>...51<sup>1</sup>.?
51^1 \equiv 51 \pmod{77}
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
5 more multiplications.
51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.
```

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

$$x^{43} = x^{32} * x^8 * x^2 * x^1.$$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

O(n) multiplications.

 $O(n^2)$ time per multiplication.

 $\implies O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.

RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$$E(m,(N,e)) = m^e \pmod{N}.$$

$$D(m,(N,d)) = m^d \pmod{N}.$$

For 512 bits, a few hundred million operations. Easy, peasey.

Decoding.

```
E(m,(N,e)) = m^e \pmod{N}.

D(m,(N,d)) = m^d \pmod{N}.

N = pq and d = e^{-1} \pmod{(p-1)(q-1)}.

Want: (m^e)^d = m^{ed} = m \pmod{N}.
```

Always decode correctly?

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq$ and $d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
 $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$
Consider...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

$$\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Rightarrow a^{k(p-1)+1} = a \pmod{p}$$
 versus
$$a^{k(p-1)(q-1)+1} = a \pmod{pq}.$$

Similar, not same, but useful.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.