Midterm 2 Review.

We have a lot of slides for your use.
But will only cover some in this lecture.
For probability, from Professor Ramchandran.
Will only review distributions since that was quick
A bit more review of discrete math.

An important remark

- The random experiment selects one and only one outcome in Ω
- For instance, when we flip a fair coin twice
- $\Omega=\{H H, T H, H T, T T\}$
- The experiment selects one of the elements of Ω.
- In this case, its wrong to think that $\Omega=\{H, T\}$ and that the experiment selects two outcomes.
Why? Because this would not describe how the two coin flips are related to each other
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets $H H$ or $T T$ with probability 50% each. This is not captured by 'picking two outcomes.'

Probability Space.

1. A "random experiment:
(a) Flip a biased coin
(b) Flip two fair coins
(c) Deal a poker hand
2. A set of possible outcomes: Ω.
(a) $\Omega=\{H, T\}$;
(b) $\Omega=\{H H, H T, T H, T T\} ;|\Omega|=4$;
(c) $\Omega=\{A \wedge A \diamond A \& A \bigcirc K \wedge, A \wedge A \diamond A \& A \cup Q \wedge, \ldots\}$ $|\Omega|=\binom{52}{5}$.
3. Assign a probability to each outcome: $\operatorname{Pr}: \Omega \rightarrow[0,1]$.
(a) $\operatorname{Pr}[H]=p, \operatorname{Pr}[T]=1-p$ for some $p \in[0,1]$
(b) $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=1$
(c) $\operatorname{Pr}[A \wedge A \diamond A \bullet A \cup K \backsim]=\cdots=1 /\binom{52}{5}$
4. Assign a probability to each outcome: $\operatorname{Pr}: \Omega \rightarrow[0,1]$
(a) $\operatorname{Pr}[H]=p, \operatorname{Pr}[T]=1-p$ for some $p \in[0,1]$
(b) $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$
(c) $\operatorname{Pr}[A \wedge A \diamond A \& A \bigcirc K \backsim]=\cdots=1 /\binom{52}{5}$

Probability Basics Review

Setup

- Random Experiment

Flip a fair coin twice.

- Probability Space.
- Sample Space: Set of outcomes, Ω
$\Omega=\{H H, H T, T H, T T\}$
(Note: Not $\Omega=\{H, T\}$ with two picks!)
- Probability: $\operatorname{Pr}[\omega]$ for all $\omega \in \Omega$
$\operatorname{Pr}[H H]=\cdots=\operatorname{Pr}[\operatorname{TT}]=1 / 4$

1. $0 \leq \operatorname{Pr}[\omega] \leq 1$.
2. $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$

Probability Space: formalism.

Ω is the sample space.

$\omega \in \Omega$ is a sample point. (Also called an outcom e.)
Sample point ω has a probability $\operatorname{Pr}[\omega]$ where

- $0 \leq \operatorname{Pr}[\omega] \leq 1$;
- $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$

Sample Space

Probability of exactly one 'heads' in two coin flips? Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': HT,TH
This leads to a definition!
Definition:

- An event, E, is a subset of outcomes: $E \subset \Omega$
- The probability of E is defined as $\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]$.

Probability of exactly one heads in two coin flips?
Sample Space, $\Omega=\{H H, H T, T H, T T\}$.
Uniform probability space: $\operatorname{Pr}[H H]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=\operatorname{Pr}[T T]=\frac{1}{4}$.
Event, E, "exactly one heads": $\{T H, H T\}$.

Conditional Probability.

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}.

Then,

$$
\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1} \cap B\right]+\cdots+\operatorname{Pr}\left[A_{N} \cap B\right] .
$$

Indeed, B is the union of the disjoint sets $A_{n} \cap B$ for $n=1, \ldots, N$.
In "math": $\omega \in B$ is in exactly one of $A_{i} \cap B$.
Adding up probability of them, get $\operatorname{Pr}[\omega]$ in sum.

Product Rule

Recall the definition:

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

Hence,
$\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]$.
Consequently,

$$
\begin{aligned}
\operatorname{Pr}[A \cap B \cap C] & =\operatorname{Pr}[(A \cap B) \cap C] \\
& =\operatorname{Pr}[A \cap B] \operatorname{Pr}[C \mid A \cap B] \\
& =\operatorname{Pr}[A] \operatorname{Pr}[B \mid A] \operatorname{Pr}[C \mid A \cap B] .
\end{aligned}
$$

Product Rule

Theorem Product Rule
 Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then

$$
\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] .
$$

Proof: By induction.
Assume the result is true for n. (It holds for $n=2$.) Then,

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n} \cap A_{n+1}\right] \\
& \quad=\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{n}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right]
\end{aligned}
$$

$$
=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right] \operatorname{Pr}\left[A_{n+1} \mid A_{1} \cap \cdots \cap A_{n}\right],
$$

so that the result holds for $n+1$.

Is your coin loaded?

A picture:

Total probability

Assume that Ω is the union of the disjoint sets A_{1}, \ldots, A_{N}
Prior
probabilities
$\operatorname{Pr}\left[A_{n}\right]$
$\operatorname{Pr}[B]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[B \mid A_{1}\right]+\cdots+\operatorname{Pr}\left[A_{N}\right] \operatorname{Pr}\left[B \mid A_{N}\right]$.

Independence

Definition: Two events A and B are independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B] .
$$

Examples:

- When rolling two dice, $A=$ sum is 7 and $B=$ red die is 1 are independent;
- When rolling two dice, $A=$ sum is 3 and $B=$ red die is 1 are not independent;
- When flipping coins, $A=$ coin 1 yields heads and $B=$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A=$ bin 1 is empty and $B=$ bin 2 is empty are not independent;

Is your coin loaded?

Your coin is fair w.p. $1 / 2$ or such that $\operatorname{Pr}[H]=0.6$, otherwise.
You flip your coin and it yields heads
What is the probability that it is fair?

Analysis:

$A=$ 'coin is fair', $B=$ 'outcome is heads'
We want to calculate $P[A \mid B]$.
We know $\operatorname{P}[B \mid A]=1 / 2, \operatorname{P}[B \mid \bar{A}]=0.6, \operatorname{Pr}[A]=1 / 2=\operatorname{Pr}[\bar{A}]$
Now,
$\operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]+\operatorname{Pr}[\bar{A} \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]+\operatorname{Pr}[\bar{A}] \operatorname{Pr}[B \mid \bar{A}]$
$=(1 / 2)(1 / 2)+(1 / 2) 0.6=0.55$
Thus,

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)+(1 / 2) 0.6} \approx 0.45 .
$$

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]
$$

Indeed: $\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$, so that
$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] \Leftrightarrow \frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A] \Leftrightarrow \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.

Bayes Rule

Another picture: We imagine that there are N possible causes A_{1}, \ldots, A_{N}.

$$
\begin{gathered}
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{p_{n} q_{n}}{\sum_{m} p_{m} q_{m}} .
\end{gathered}
$$

Balls in bins

One throws m balls into $n>m$ bins.

Theorem:

$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

Why do you have a fever?

$$
\begin{aligned}
& \text { Prior } \\
& \text { Using Bayes' rule, we find } \\
& \quad \operatorname{Pr}[\text { Flu } \mid \text { High Fever }]=\frac{0.15 \times 0.80}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.58 \\
& \operatorname{Pr}[\text { Ebola|High Fever }]=\frac{10^{-8} \times 1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 5 \times 10^{-8} \\
& \operatorname{Pr}[\text { Other } \mid \text { High Fever }]=\frac{0.85 \times 0.1}{0.15 \times 0.80+10^{-8} \times 1+0.85 \times 0.1} \approx 0.42
\end{aligned}
$$

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Balls in bins

Theorem:

Theorem:
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}$, for large enough n.

In particular, $\operatorname{Pr}[$ no collision $] \approx 1 / 2$ for $m^{2} /(2 n) \approx \ln (2)$, i.e.,

$$
m \approx \sqrt{2 \ln (2) n} \approx 1.2 \sqrt{n}
$$

E.g., $1.2 \sqrt{20} \approx 5.4$.

Roughly, $\operatorname{Pr}[$ collision $] \approx 1 / 2$ for $m=\sqrt{n} .\left(e^{-0.5} \approx 0.6\right.$.

Summary

Events, Conditional Probability, Independence, Bayes' Rule
Key Ideas:

- Conditional Probability:
$\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}$
- Independence: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$.
- Bayes' Rule:

$$
\operatorname{Pr}\left[A_{n} \mid B\right]=\frac{\operatorname{Pr}\left[A_{n}\right] \operatorname{Pr}\left[B \mid A_{n}\right]}{\sum_{m} \operatorname{Pr}\left[A_{m}\right] \operatorname{Pr}\left[B \mid A_{m}\right]} .
$$

$\operatorname{Pr}\left[A_{n} \mid B\right]=$ posterior probability; $\operatorname{Pr}\left[A_{n}\right]=$ prior probability

- All these are possible:
$\operatorname{Pr}[A \mid B]<\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]>\operatorname{Pr}[A] ; \operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$.

The Calculation.
$A_{i}=$ no collision when i th ball is placed in a bin.
$\operatorname{Pr}\left[A_{i} \mid A_{i-1} \cap \cdots \cap A_{1}\right]=\left(1-\frac{i-1}{n}\right)$.
no collision $=A_{1} \cap \cdots \cap A_{m}$.
Product rule:
$\operatorname{Pr}\left[A_{1} \cap \cdots \cap A_{m}\right]=\operatorname{Pr}\left[A_{1}\right] \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdots \operatorname{Pr}\left[A_{m} \mid A_{1} \cap \cdots \cap A_{m-1}\right]$

$$
\Rightarrow \operatorname{Pr}[\text { no collision }]=\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) .
$$

Hence,

$$
\begin{aligned}
\ln (\operatorname{Pr}[\text { no collision }]) & =\sum_{k=1}^{m-1} \ln \left(1-\frac{k}{n}\right) \approx \sum_{k=1}^{m-1}\left(-\frac{k}{n}\right)^{(*)} \\
& =-\frac{1}{n} \frac{m(m-1)^{(+)}}{2} \approx-\frac{m^{2}}{2 n}
\end{aligned}
$$

${ }^{(*)}$ We used $\ln (1-\varepsilon) \approx-\varepsilon$ for $|\varepsilon| \ll 1$.
$\left.{ }^{(}{ }^{+}\right) 1+2+\cdots+m-1=(m-1) m / 2$.

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays?
Probability that m peopl
With $n=365$, one finds
$\operatorname{Pr}[$ collision $] \approx 1 / 2$ if $m \approx 1.2 \sqrt{365} \approx 23$.
skippause
If $m=60$, we find that
$\operatorname{Pr}[$ no collision $] \approx \exp \left\{-\frac{m^{2}}{2 n}\right\}=\exp \left\{-\frac{60^{2}}{2 \times 365}\right\} \approx 0.007$.
If $m=366$, then $\operatorname{Pr}[$ no collision $]=0$. (No approximation here!)

Distribution

The probability of X taking on a value a.

Definition: The distribution of a random variable X, is $\{(a, \operatorname{Pr}[X=a]): a \in \mathscr{A}\}$, where \mathscr{A} is the range of X.

$\operatorname{Pr}[X=a]:=\operatorname{Pr}\left[X^{-1}(a)\right]$ where $X^{-1}(a):=\{\omega \mid X(\omega)=a\}$.

Random Variables.

A random variable, X, for an experiment with sample space Ω is a function $X: \Omega \rightarrow \mathfrak{R}$.
Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω.
The function $X(\cdot)$ is not random, not a variable!
What varies at random (from experiment to experiment)? The outcome!

Number of pips.

Experiment: roll two dice.

Number of pips in two dice.
"What is the likelihood of getting n pips?"

$\operatorname{Pr}[X=10]=3 / 36=\operatorname{Pr}\left[X^{-1}(10)\right] ; \operatorname{Pr}[X=8]=5 / 36=\operatorname{Pr}\left[X^{-1}(8)\right]$.

Named Distributions.

Some distributions come up over and over again.
...like "choose" or "stars and bars"...
Let's cover one for this review.

The binomial distribution.
Flip n coins with heads probability p.
Random variable: number of heads
Binomial Distribution: $\operatorname{Pr}[X=i]$, for each i.
How many sample points in event " $X=i$ "?
i heads out of n coin flips $\Longrightarrow\binom{n}{i}$
What is the probability of ω if ω has i heads? Probability of heads in any position is p. Probability of tails in any position is $(1-p)$. So, we get

$$
\operatorname{Pr}[\omega]=p^{i}(1-p)^{n-i} .
$$

Probability of " $X=i$ " is sum of $\operatorname{Pr}[\omega], \omega \in$ " $X=i$ ".
$\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}, i=0,1, \ldots, n: B(n, p)$ distribution

Discrete Math:Review

The binomial distribution

$$
\Delta-m \text { time }
$$

$$
m \text { times }
$$

$\binom{n}{m}$ outcomes with m Hs and $n-m$ Ts

$$
\Longrightarrow \operatorname{Pr}[X=m]=\binom{n}{m} p^{m}(1-p)^{n-m}
$$

Modular Arithmetic Inverses and GCD
x has inverse modulo m if and only if $\operatorname{gcd}(x, m)=1$
Group structures more generally.
Extended-gcd (x, y) returns ($d, a, b)$
$d=\operatorname{gcd}(x, y)$ and $d=a x+b y$
Multiplicative inverse of (x, m).
$\operatorname{egcd}(x, m)=(1, a, b)$
a is inverse! $1=a x+b m=a x(\bmod m)$.

Idea: egcd.

gcd produces 1
by adding and subtracting multiples of x and y

Summary
Random Variables

- A random variable X is a function $X: \Omega \rightarrow \Re$.
- $\operatorname{Pr}[X=a]:=\operatorname{Pr}\left[X^{-1}(a)\right]=\operatorname{Pr}[\{\omega \mid X(\omega)=a\}]$.
- $\operatorname{Pr}[X \in A]:=\operatorname{Pr}\left[X^{-1}(A)\right]$.
- The distribution of X is the list of possible values and their probability: $\{(a, \operatorname{Pr}[X=a]), a \in \mathscr{A}\}$

Non-recursive extended gcd

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.
$7(0)+60(1)=60$
$7(1)+60(0)=7$
$7(-8)+60(1)=4$
$7(9)+60(-1)=3$
$7(-17)+60(2)=1$

Confirm: $-119+120=1$
$d=e^{-1}=-17=43=(\bmod 60)$

Fermat from Bijection.

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,
$a^{p-1} \equiv 1(\bmod p)$.
Proof: Consider $T=\{a \cdot 1(\bmod p), \ldots, a \cdot(p-1)(\bmod p)\}$
T is range of function $f(x)=a x \bmod (p)$ for set $S=\{1, \ldots, p-1\}$. Invertible function: one-to-one
$T \subseteq S$ since $0 \notin T$.
p is prime.
Product of elts of $T=$ Product of elts of S.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \bmod p,
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, mulitply by inverses to get...
$a^{(p-1)} \equiv 1 \bmod p$.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find $x=a(\bmod m)$ and $x=b(\bmod n)$ where $\operatorname{gcd}(m, n)=1$.
CRT Thm: Unique solution $(\bmod m n)$.
Proof:
Consider $u=n\left(n^{-1}(\bmod m)\right)$
$u=0(\bmod n) \quad u=1(\bmod m)$
Consider $v=m\left(m^{-1}(\bmod n)\right)$.
$v=1(\bmod n) \quad v=0(\bmod m)$
Let $x=a u+b v$.
$x=a(\bmod m)$ since $b v=0(\bmod m)$ and $a u=a(\bmod m)$
$x=b(\bmod n)$ since $a u=0(\bmod n)$ and $b v=b(\bmod n)$
Only solution? If not, two solutions, x and y.
$(x-y) \equiv 0(\bmod m)$ and $(x-y) \equiv 0(\bmod n)$.
$\Longrightarrow(x-y)$ is multiple of m and n since $\operatorname{gcd}(m, n)=1$.
$\Longrightarrow x-y \geq m n \Longrightarrow x, y \notin\{0, \ldots m n-1\}$
Thus, only one solution modulo mn .

RSA

RSA:
$N=p, q$
e with $\operatorname{gcd}(e,(p-1)(q-1))=1$.
$d=e^{-1}(\bmod (p-1)(q-1))$.
Theorem: $x^{\text {ed }}=x(\bmod N)$
Proof:
$x^{e d}-x$ is divisible by p and $q \Longrightarrow$ theorem!
$x^{e d}-x=x^{k(p-1)(q-1)+1}-x=x\left(\left(x^{k(q-1)}\right)^{p-1}-1\right)$
If x is divisible by p, the product is.
Otherwise $\left(x^{k(q-1)}\right)^{p-1}=1(\bmod p)$ by Fermat
$\Longrightarrow\left(x^{k(q-1)}\right)^{p-1}-1$ divisible by p.
Similarly for q.

Chinese Remainder Theorem.

Theorem: There is a unique solution modulo $\Pi_{i} n_{i}$, to the system $x=a_{i}\left(\bmod n_{i}\right)$ and $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$.
For $x=5(\bmod 7), x=2(\bmod 11), x=1(\bmod 3)$
$x=5 \times\left((11)\left((11)^{-1}(\bmod 7)\right) \times(3)\left(3^{-1}(\bmod 7)\right)\right.$
$+2(7)\left(7^{-1}(\bmod 11)\right)(3)\left(3^{-1}(\bmod 11)\right)$ $+1\left(7 \times 7^{-1}(\bmod 3)\right)\left(11 \times\left(11^{-1}(\bmod 3)\right)\right.$
This is all modulo $11 \times 7 \times 3=231$.
For each modulus n_{i},
multiply all other modulii by the inverses $\left(\bmod n_{i}\right)$ and scale by a_{i}

RSA, Public Key, and Signatures.

RSA:
$N=p, q$
e with $\operatorname{gcd}(e,(p-1)(q-1))$.
$d=e^{-1}(\bmod (p-1)(q-1))$
Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.
Signature scheme:
$S(C)=D(C)$.
Announce $(C, S(C)$)
Verify: Check $C=E(C)$.
$E(D(C, k), K)=\left(C^{d}\right)^{e}=C(\bmod N)$

Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:

Any polynomial with roots r_{1}, \ldots, r_{k}.
written as $\left(x-r_{1}\right) \cdots\left(x-r_{k}\right) Q(x)$.
using polynomial division.
Degree at least the number of roots.
Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d+1$:
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$ with x_{i} distinct.
Proof Ideas:
Lagrange Interpolation gives existence.
Property 1 gives uniqueness.

Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d+1$ points:
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$ with x_{i} distinct.
Secret Sharing: k out of n people know secret
Scheme: degree $n-1$ polynomial, $P(x)$.
Secret: $P(0)$ Shares: $(1, P(1)), \ldots(n, P(n))$
Recover Secret: Reconstruct $P(x)$ with any k points.
Erasure Coding: n packets, k losses.
Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon Message: $P(0)=m_{0}, P(1)=m_{1}, \ldots P(n-1)=m_{n-1}$ Send: $(0, P(0)), \ldots(n+k-1, P(n+k-1))$
Recover Message: Any n packets are cool by property 2 .
Corruptions Coding: n packets, k corruptions.
Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon
Message: $P(0)=m_{0}, P(1)=m_{1}, \ldots P(n-1)=m_{n-1}$
Send: $(0, P(0)), \ldots(n+2 k-1, P(n+2 k-1))$.
Recovery: $P(x)$ is only consistent polynomial with $n+k$ points.
Property 2 and pigeonhole principle.

Example: visualize.

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule
Second rule: when order doesn't matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50=\frac{521}{49}$. First rule.
Poker hands: Δ ?
-als: Q,
Deals: $Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K$
$\Delta=3 \times 2 \times 1$ First rule again
Total: $\frac{521}{4913!}$ Second Rule!
Choose k out of n
Ordered set: $\frac{n!}{(n-k)!}$
What is Δ ? k ! First rule again.
\Longrightarrow Total: $\frac{n!}{(n-k)!k!}$ Second rule.

Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors
For all points $i=1, \ldots, i, n+2 k, P(i) E(i)=R(i) E(i)(\bmod p)$ since $E(i)=0$ at points where there are errors.
Let $Q(x)=P(x) E(x)$.
$Q(x)=a_{n+k-1} x^{n+k-1}+\cdots a_{0}$

$$
\begin{aligned}
& E(X)=X^{n}+b_{k-1} X^{n-1}+\cdots b_{0} . \\
& \text { Gives system of } n+2 k \text { linear equations. }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
(0)^{n+k-1}+\ldots a_{0} & \equiv R(1)\left(1+b_{k-1} \cdots b_{0}\right)(\bmod p) \\
a_{n+k-1} & =R(\partial)(0)^{k}+h \\
(0)^{k-1}
\end{array} h^{n}\right)
$$

$$
a_{n+k-1}(2)^{n+k-1}+\ldots a_{0} \equiv R(2)\left((2)^{k}+b_{k-1}(2)^{k-1} \ldots b_{0}\right)(\bmod p)
$$

$a_{n+k-1}(m)^{n+k-1}+\ldots a_{0} \equiv R(m)\left((m)^{k}+b_{k-1}(m)^{k-1} \cdots b_{0}\right)(\bmod p)$
..and $n+2 k$ unknown coefficients of $Q(x)$ and $E(x)$!
Solve for coefficients of $Q(x)$ and $E(x)$.

$$
\text { Find } P(x)=Q(x) / E(x) \text {. }
$$

Example: visualize

First rule: $n_{1} \times n_{2} \cdots \times n_{3}$. Product Rule.
Second rule: when order doesn't matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A's are the same!
What is Δ ?
$A_{1} \mathrm{NA}_{2} \mathrm{GRA}_{3} \mathrm{M}, \mathrm{A}_{2} \mathrm{NA}_{1} \mathrm{GRA}_{3} \mathrm{M}$,
$\Delta=3 \times 2 \times 1=3$! First rule!
$=3 \times 2 \times 1=3!$
$\Longrightarrow \frac{7!}{3!}$ Second rule!

Counting

First Rule
Second Rule
Stars/Bars
common Scenarios: Sampling, Balls in Bins
Sum Rule. Inclusion/Exclusion.
Combinatorial Proofs.

Summary.

Samples with replacement from n items: n^{k}.

Sample without replacement: $\frac{n!}{(n-k)!}$
Sample without replacement and order doesn't matter: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. " n choose k "
(Count using first rule and second rule.)
Sample with replacement and order doesn't matter: $\binom{k+n-1}{n-1}$.

Count with stars and bars

how many ways to add up n numbers to get k.
Each number is number of samples of type i which adds to total, k

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and $T,|S \cup T|=|S|+|T|$
Example: How many permutations of n items start with 1 or 2?
$1 \times(n-1)!+1 \times(n-1)$!
Inclusion/Exclusion Rule: For any S and T,
$|S \cup T|=|S|+|T|-|S \cap T|$.
Example: How many 10 -digit phone numbers have 7 as their first or second digit?
$S=$ phone numbers with 7 as first digit. $|S|=10^{9}$
$T=$ phone numbers with 7 as second digit. $|T|=10^{9}$
$S \cap T=$ phone numbers with 7 as first and second digit. $|S \cap T|=10^{8}$
Answer: $|S|+|T|-|S \cap T|=10^{9}+10^{9}-10^{8}$.

Isomorphism principle.

Given a function, $f: D \rightarrow R$
One to One:
For all $\forall x, y \in D, x \neq y \Longrightarrow f(x) \neq f(y)$.
or
$\forall x, y$
$\forall x, y \in D, f(x)=f(y) \Longrightarrow x=y$.
Onto: For all $y \in R, \exists x \in D, y=f(x)$.
$f(\cdot)$ is a bijection if it is one to one and onto

Isomorphism principle:

If there is a bijection $f: D \rightarrow R$ then $|D|=|R|$.

Combinatorial Proofs.

Theorem: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Proof: How many size k subsets of $n+1$? $\binom{n+1}{k}$
How many size k subsets of $n+1$?
How many contain the first element?
Chose first element, need to choose $k-1$ more from remaining n elements.
$\Longrightarrow\binom{n}{k-1}$
How many don't contain the first element?
Need to choose k elements from remaining n elts.
$\Longrightarrow\binom{n}{k}$
So, $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$.

Cardinalities of uncountable sets?

Cardinality of $[0,1]$ smaller than all the reals?
$f: R^{+} \rightarrow[0,1]$.

$$
f(x)=\left\{\begin{array}{lr}
x+\frac{1}{2} & 0 \leq x \leq 1 / 2 \\
\frac{1}{4 x} & x>1 / 2
\end{array}\right.
$$

One to one. $x \neq y$
If both in $[0,1 / 2]$, a shift $\Longrightarrow f(x) \neq f(y)$.
If neither in $[0,1 / 2]$ different mult inverses $\Longrightarrow f(x) \neq f(y)$.
If one is in $[0,1 / 2]$ and one isn't, different ranges $\Longrightarrow f(x) \neq f(y)$
Bijection!
$[0,1]$ is same cardinality as nonnegative reals

Countability

somporphism principle.

Example.
Countability.
Diagonalization.

Countable.

Definition: S is countable if there is a bijection between S and some subset of N.
If the subset of N is finite, S has finite cardinality
If the subset of N is infinite, S is countably infinite
Bijection to or from natural numbers implies countably infinite.
Enumerable means countable.
Subset of countable set is countable
All countably infinite sets are the same cardinality as each other

Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.

Square of countably infinite?
Enumerate: $(0,0),(0,1),(0,2), \ldots$???
Never get to $(1,1)$!
Enumerate: $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)$
(a, b) at position $(a+b-1)(a+b) / 2+b$ in this order

- Positive Rational numbers.

Infinite Subset of pairs of natural numbers Countably infinite.

- All rational numbers.

Enumerate: list 0 , positive and negative. How?
Enumerate: 0, first positive, first negative, second positive. Will eventually get to any rational

Halt does not exist.

HALT (P, I)
 P - program
 I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Theorem: There is no program HALT
Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

Diagonalization: power set of Integers.

The set of all subsets of N.
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D :
If ith set in L does not contain $i, i \in D$. otherwise $i \notin D$.
D is different from i th set in L for every i.
$\Longrightarrow D$ is not in the listing
D is a subset of N.
L does not contain all subsets of N.
Contradiction.
Theorem: The set of all subsets of N is not countable
(The set of all subsets of S, is the powerset of N.)

Halt and Turing

Proof: Assume there is a program $\operatorname{HALT}(\cdot, \cdot)$
Turing(P)

1. If $\operatorname{HALT}(P, P)=$ "halts", then go into an infinite loop
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that "is" the program HALT
There is text that is the program Turing.
Can run Turing on Turing!
Does Turing(Turing) halt?
Turing(Turing) halts
\Longrightarrow then HALTS(Turing, Turing) $=$ halts
\Longrightarrow Turing(Turing) loops forever.
Turing(Turing) loops forever
\Longrightarrow then HALTS(Turing, Turing) \neq halts
\Longrightarrow Turing(Turing) halts.
Either way is contradiction. Program HALT does not exist

Uncomputability.

Halting problem is undecibable
Diagonalization.

Undecidable problems.

Does a program print "Hello World"?
Find exit points and add statement: Print "Hello World."
Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.
Does a set of integer equations have a solution?
Example: Ask program if " $x^{n}+y^{n}=1$?" has integer solutions.
Problem is undecidable.
Be carefu!!
Is there a solution to $x^{n}+y^{n}=1$?
(Diophantine equation.)
The answer is yes or no. This "problem" is not undecidable.
Undecidability for Diophantine set of equations
\Longrightarrow no program can take any set of integer equations and always output correct answer.

Midterm format

Time: approximately 120 minutes.
Some longer questions.
Priming: sequence of questions..
but don't overdo this as test strategy!!!
deas, conceptual,
more calculation.

Wrapup.

Watch Piazza for Logistics!

Other issues...
fa17@eecs70.org
Private message on piazza.

