CS70: Lecture 33.

WLLN, Confidence Intervals (CI): Chebyshev vs. CLT

1. Review: Inequalities: Markov, Chebyshev
2. Law of Large Numbers
3. Review: CLT
4. Confidence Intervals: Chebyshev vs. CLT

Inequalities: An Overview

Markov Inequality

If X can only take non-negative values then

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

for all $a>0$.
This inequality makes no assumptions on the existence of variance and so it can't be very strong for typical distributions. In fact, it is quite weak.

Chebyshev Inequality

If X is a random variable with finite mean and variance σ^{2}, then

$$
P(|X-E[X]| \geq c) \leq \frac{\sigma^{2}}{c^{2}}
$$

for all $c>0$.
Also, letting $c=k \sigma$:

$$
P(|X-E[X]| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Fraction of H's

Here is a classical application of Chebyshev's inequality.
How likely is it that the fraction of H's differs from 50% ?
Let $X_{m}=1$ if the m-th flip of a fair coin is H and $X_{m}=0$ otherwise.

Define

$$
M_{n}=\frac{X_{1}+\cdots+X_{n}}{n}, \text { for } n \geq 1
$$

We want to estimate

$$
\operatorname{Pr}\left[\left|M_{n}-0.5\right| \geq 0.1\right]=\operatorname{Pr}\left[M_{n} \leq 0.4 \text { or } M_{n} \geq 0.6\right]
$$

By Chebyshev,

$$
\operatorname{Pr}\left[\left|M_{n}-0.5\right| \geq 0.1\right] \leq \frac{\operatorname{var}\left[M_{n}\right]}{(0.1)^{2}}=100 \operatorname{var}\left[M_{n}\right]
$$

Now,

$$
\begin{aligned}
& \operatorname{var}\left[M_{n}\right]=\frac{1}{n^{2}}\left(\operatorname{var}\left[X_{1}\right]+\cdots+\operatorname{var}\left[X_{n}\right]\right)=\frac{1}{n} \operatorname{var}\left[X_{1}\right] \leq \frac{1}{4 n} . \\
& \operatorname{Var}\left(X_{i}\right)=p(1-p) \leq(.5)(.5)=\frac{1}{4}
\end{aligned}
$$

Fraction of H's

$$
\begin{gathered}
M_{n}=\frac{X_{1}+\cdots+X_{n}}{n}, \text { for } n \geq 1 \\
\operatorname{Pr}\left[\left|M_{n}-0.5\right| \geq 0.1\right] \leq \frac{25}{n}
\end{gathered}
$$

For $n=1,000$, we find that this probability is less than 2.5%.
As $n \rightarrow \infty$, this probability goes to zero.
In fact, for any $\varepsilon>0$, as $n \rightarrow \infty$, the probability that the fraction of H s is within $\varepsilon>0$ of 50% approaches 1 :

$$
\operatorname{Pr}\left[\left|M_{n}-0.5\right| \leq \varepsilon\right] \rightarrow 1
$$

This is an example of the (Weak) Law of Large Numbers.
We look at a general case next.

Weak Law of Large Numbers

We perform an experiment n times independently and

$$
M_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The fact that $\operatorname{var}\left(M_{n}\right) \rightarrow 0$ at rate $\frac{1}{n}$ is great but what does that tell us about $P\left(\mid M_{n}-E\left[X_{i} \mid\right)\right.$? How quickly does it go to zero? Just use Chebyshev: $P(|X-E[X]| \geq c) \leq \frac{\sigma^{2}}{c^{2}}$

$$
\left.P\left(\mid M_{n}-E\left[X_{i}\right]\right) \geq \epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}}
$$

for any $\epsilon>0$.
This is a form of the Weak Law of Large Numbers.

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers
Let X_{1}, X_{2}, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon>0$,

$$
\operatorname{Pr}\left[\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right| \geq \varepsilon\right] \rightarrow 0, \text { as } n \rightarrow \infty
$$

Proof:

Let $M_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then

$$
\begin{aligned}
\operatorname{Pr}\left[\left|M_{n}-\mu\right| \geq \varepsilon\right] & \leq \frac{\operatorname{var}\left[M_{n}\right]}{\varepsilon^{2}}=\frac{\operatorname{var}\left[X_{1}+\cdots+X_{n}\right]}{n^{2} \varepsilon^{2}} \\
& =\frac{n \operatorname{var}\left[X_{1}\right]}{n^{2} \varepsilon^{2}}=\frac{\operatorname{var}\left[X_{1}\right]}{n \varepsilon^{2}} \rightarrow 0, \text { as } n \rightarrow \infty
\end{aligned}
$$

What does the Weak Law Really Mean?

WLLN: $\lim _{n \rightarrow \infty} P\left(\left|M_{n}-\mu\right| \geq \epsilon\right)=0$. Just using the defn of limit: For any $\epsilon, \delta>0$, there exists a number $n(\epsilon, \delta)$ such that

$$
P\left(\left|M_{n}-\mu\right| \geq \epsilon\right) \leq \delta \text { for all } n \geq n(\epsilon, \delta)
$$

- $\delta:$ Confidence level
- ϵ : "Error"
- $n(\epsilon, \delta)$: threshold function for a given level of confidence and accuracy
What this is saying is that if we compute M_{n} for large n then:
Almost Always, $\left|M_{n}-\mu\right|<\epsilon$.
We say that M_{n} converges to μ in probability.

Recap: Normal (Gaussian) Distribution.

For any μ and σ, a normal (aka Gaussian) random variable Y, which we write as $Y=\mathscr{N}\left(\mu, \sigma^{2}\right)$, has pdf

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(y-\mu)^{2} / 2 \sigma^{2}} .
$$

Standard normal has $\mu=0$ and $\sigma=1$.

Note: $\operatorname{Pr}[|Y-\mu|>1.65 \sigma]=10 \% ; \operatorname{Pr}[|Y-\mu|>2 \sigma]=5 \%$.

Recap: Central Limit Theorem

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be i.i.d. with $E\left[X_{1}\right]=\mu$ and $\operatorname{var}\left(X_{1}\right)=\sigma^{2}$. Define

$$
S_{n}:=\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Then,

$$
S_{n} \rightarrow \mathscr{N}(0,1) \text {, as } n \rightarrow \infty .
$$

That is,

$$
\begin{gathered}
\operatorname{Pr}\left[S_{n} \leq \alpha\right] \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\alpha} e^{-x^{2} / 2} d x \\
E\left(S_{n}\right)=\frac{1}{\sigma / \sqrt{n}}\left(E\left(A_{n}\right)-\mu\right)=0 \\
\operatorname{Var}\left(S_{n}\right)=\frac{1}{\sigma^{2} / n} \operatorname{Var}\left(A_{n}\right)=1
\end{gathered}
$$

Confidence Interval (CI) for Mean: CLT

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{A_{n}-\mu}{\sigma / \sqrt{n}}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Thus, for $n \gg 1$, one has

$$
\operatorname{Pr}\left[-2 \leq\left(\frac{A_{n}-\mu}{\sigma / \sqrt{n}}\right) \leq 2\right] \approx 95 \%
$$

Equivalently,

$$
\operatorname{Pr}\left[\mu \in\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right]\right] \approx 95 \%
$$

That is,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

CI for Mean: CLT vs. Chebyshev

Let X_{1}, X_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}. Let

$$
A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

The CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathscr{N}(0,1) \text { as } n \rightarrow \infty .
$$

Also,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .
$$

What would Chebyshev's bound give us?

$$
\left[A_{n}-4.5 \frac{\sigma}{\sqrt{n}}, A_{n}+4.5 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu .(\text { Why?) }
$$

Thus, the CLT provides a smaller confidence interval.

Coins and CLT.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1) .
$$

$\binom{n}{m}$ outcomes with m Hs and $n-m$ Ts

$$
\Longrightarrow \operatorname{Pr}[X=m]=\binom{n}{m} p^{m}(1-p)^{n-m}
$$

Coins and CLT.

Let X_{1}, X_{2}, \ldots be i.i.d. $B(p)$. Thus, $X_{1}+\cdots+X_{n}=B(n, p)$. Here, $\mu=p$ and $\sigma=\sqrt{p(1-p)}$. CLT states that

$$
\frac{X_{1}+\cdots+X_{n}-n p}{\sqrt{p(1-p) n}} \rightarrow \mathscr{N}(0,1)
$$

and

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } \mu
$$

with $A_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$.
Hence,

$$
\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Since $\sigma \leq 0.5$,

$$
\left[A_{n}-2 \frac{0.5}{\sqrt{n}}, A_{n}+2 \frac{0.5}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Thus,

$$
\left[A_{n}-\frac{1}{\sqrt{n}}, A_{n}+\frac{1}{\sqrt{n}}\right] \text { is a } 95 \%-\mathrm{Cl} \text { for } p .
$$

Comparing Chebyshev and CLT: Polling

We ask n randomly sampled voters whether they support Bob. $X_{i}=1$ if the $i^{\text {th }}$ voter says "yes" and $X_{i}=0$ otherwise. The X_{i} are iid.
We want to be sure with prob ≥ 0.95 that $\left|M_{100}-p\right| \leq 0.1$. How many people should we ask?
Again, use the bound that $\operatorname{var}\left(X_{i}\right) \leq \frac{1}{4}$
By Chebyshev:

$$
\frac{25}{n} \leq 0.05 \Rightarrow n \geq 500
$$

By CLT:

$$
\begin{gathered}
2(1-\phi(2 * 0.1 * \sqrt{n})) \leq 0.05 \\
\phi(2 * 0.1 * \sqrt{n}) \geq 0.975
\end{gathered}
$$

Since $\phi(1.96)=0.975$:

$$
n \geq 96.04
$$

CLT much better than Chebyshev.

Summary

Inequalities and Confidence Interals

1. Inequalities: Markov and Chebyshev Tail Bounds
2. Weak Law of Large Numbers
3. Confidence Intervals: Chebyshev Bounds vs. CLT Approx.
4. CLT: X_{n} i.i.d. $\Longrightarrow \frac{A_{n}-\mu}{\sigma / \sqrt{n}} \rightarrow \mathscr{N}(0,1)$
5. $\mathrm{CI}:\left[A_{n}-2 \frac{\sigma}{\sqrt{n}}, A_{n}+2 \frac{\sigma}{\sqrt{n}}\right]=95 \%-\mathrm{Cl}$ for μ.
